Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion

نویسندگان

  • Jiro Takito
  • Hirotada Otsuka
  • Satoshi Inoue
  • Tsubasa Kawashima
  • Masanori Nakamura
چکیده

The aim of this study was to elucidate the role of the zipper-like structure (ZLS), a podosome-related structure that transiently appears at the cell contact zone, in osteoclast fusion. Live-cell imaging of osteoclasts derived from RAW264.7 cells transfected with EGFP-actin revealed consistent symmetrical retrograde actin flow in the ZLS, but not in the podosome cluster, the podosome ring or the podosome belt. Confocal imaging showed that the distributions of F-actin, vinculin, paxillin and zyxin in the ZLS were different from those in the podosome belt. Thick actin filament bundles running outside the ZLS appeared to recruit non-muscle myosin IIA. The F-actin-rich domain of the ZLS contained actin-related protein 2/3 complex (Arp2/3). Inhibition of Arp2/3 activity disorganized the ZLS, disrupted actin flow, deteriorated cell-cell adhesion and inhibited osteoclast hypermultinucleation. In contrast, ML-7, an inhibitor of myosin light chain kinase, had little effect on the structure of ZLS and promoted osteoclast hypermultinucleation. These results reveal a link between actin flow in the ZLS and osteoclast fusion. Osteoclast fusion was promoted by branched actin elongation and negatively regulated by actomyosin contraction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-6: Role of Actin Cytoskeleton during Mouse Sperm Acrosomal Exocytosis

Background: Mammalian sperm must undergo a process termed capacitation to become competent to fertilize an egg. Capacitation renders the sperm competent by priming the cells to undergo a rapid exocytotic event called acrosomal exocytosis that is stimulated by the zona pellucida (ZP) of the egg or progesterone. Over the years, several biochemical events have been associated with the capacitation...

متن کامل

Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts

Cell-cell fusion is an evolutionarily conserved process that leads to the formation of multinucleated myofibers, syncytiotrophoblasts and osteoclasts, allowing their respective functions. Although cell-cell fusion requires the presence of fusogenic membrane proteins and actin-dependent cytoskeletal reorganization, the precise machinery allowing cells to fuse is still poorly understood. Using an...

متن کامل

The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts.

Multinucleated osteoclasts are responsible for bone resorption. Hypermultinucleated osteoclasts are often observed in some bone-related diseases such as Paget's disease and cherubism. The cellular mechanics controlling the size of osteoclasts is poorly understood. We introduced EGFP-actin into RAW 264.7 cells to monitor actin dynamics during osteoclast differentiation. Before their terminal dif...

متن کامل

The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell dif...

متن کامل

Adseverin knockdown inhibits osteoclastogenesis in RAW264.7 cells

Osteoclastogenesis is a complex process that is highly dependent on the dynamic regulation of the actin cytoskeleton. Adseverin (Ads), a member of the gelsolin superfamily of actin-binding proteins, regulates actin remodeling by severing and capping actin filaments. The objective of the present study was to characterize the role of Ads during osteoclastogenesis by assessing Ads expression and u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017